Skip to Content

Humans have long affected the landscapes in which they live, sometimes with disastrous consequences. ASU researchers are currently studying past and present impacts of humanity to develop sustainable strategies for the future. While some multidisciplinary teams are examining past societies to understand key lessons about the nature and possible outcomes of interactions among human and natural systems, others teams are pioneering the new field of urban ecology to understand modern human effects on biodiversity and habitat.

Biodesign Center for Bioelectronics and Biosensors

The primary aim of the Center for Bioelectronics and Biosensors is to create powerful, sensitive, and selective sensors - ranging from embedded systems to handheld devices - that can detect the presence of specific chemicals in the environment, or biomarkers in the body. The Center's research can be divided up into several key themes. Some of the technologies are focused on the detection of harmful chemicals that are a threat to the environment and human health. Others look inside the body for markers or presence of disease. Still others focus on the detection of human-made threats.

Nongjian Tao

Biodesign Center for Immunotherapy, Vaccines and Virotherapy

The Biodesign Center for Immunotherapy, Vaccines and Virotherapy (B-CIVV) is focused on exploiting cutting edge advances in microbiology and immunology, as well as the design and use of novel therapeutics based on vaccinology, virotherapy and immunotherapy to combat infectious diseases and cancer. These include development of biological therapeutics that enhance immune responses to pathogens and tumors. The Center is devising new and effective ways of producing advanced vaccines, virotherapies and immunotherapeutics for this purpose.

Athena Aktipis

Biodesign Institute

The Biodesign Institute plays a critical role in advancing the research mission of Arizona State University, a comprehensive metropolitan university that is the second largest in the U.S. The Biodesign Institute embodies the guiding principles of the New American University, as defined by Arizona State University President Michael Crow, specifically, to conduct use-inspired research, fuse intellectual disciplines and value entrepreneurship.

Center for Bioenergy and Photosynthesis

The center carries out frontier multidisciplinary scientific research designed to use biological and biologically-based artificial systems to address societal energy needs in a sustainable manner, with an emphasis on solar energy conversion and bioinspired energy transformation to meet human needs, and investigates other aspects of photosynthesis that affect society and the environment.

Ariel Anbar Thomas Day Roberto Gaxiola Devens Gust Hilairy Hartnett Rosa Krajmalnik-Brown Peter Lammers Stuart Lindsay Ana Moore Gary Moore Tom Moore Bruce Rittmann Ellen Stechel Cesar Torres Willem Vermaas Andrew Webber Paul Westerhoff Neal Woodbury Jianguo Wu

Central Arizona–Phoenix Long-Term Ecological Research

Through interdisciplinary projects integrating natural sciences, social science, and engineering, the Central Arizona–Phoenix Long-Term Ecological Research project examines the effects of urbanization on a desert ecosystem and vice versa.

Dan Childers Becky Ball Heather Bateman Christopher Boone Stevan Earl Nancy Grimm Sharon Harlan Charles Redman Philip Tarrant Billie Turner II Sally Wittlinger

Defining Stream Biomes to Better Understand and Forecast Stream Ecosystem Change

This research will develop a biome classification system for streams to better understand how streams function and provide an ability to predict how streams will change from human and environmental factors.

Nancy Grimm

Dimensions US-China: Collaborative Research: Phylogenetic, Functional, and Genetic Diversity and Ecosystem Functions in a Fragmented Landscape

This project - jointly funded with the Chinese National Science Foundation (NSFC) - will study the relationships among ecological/evolutionary measures of biodiversity, and ecosystem functions. In particular, the investigators will investigate the hypothesis that succession drives changes in biodiversity, which in turn causes altered ecosystem function.

Jianguo Wu

Drought-Net: A Global Network to Assess Terrestrial Ecosystem Sensitivity to Drought

The Drought-Net Research Coordination Network was established to advance understanding of the determinants of terrestrial ecosystem responses to drought by bringing together an international group of scientists to conduct three complementary research coordination activities: 1) planning and coordinating new research using standardized measurements to leverage the value of existing drought experiments across the globe, 2) finalizing the design and facilitating the establishment of a new international network of coordinated drought experiments, and 3) training highly motivated graduate students to conduct synthetic and network-level research through Distributed Graduate Seminars focused on drought.

Richard Phillips Osvaldo Sala Melinda Smith

Ecosystem Response to N and Organic C Deposition from the Urban Atmosphere

The "Urban Air" project studies the exchange of chemical elements between land and atmosphere in urban systems.

Sharon Hall Stevan Earl Nancy Grimm Quincy Stewart

Effects of Flow Regime Shifts, Antecedent Hydrology, Nitrogen Pulses and Resource Quantity and Quality on Food Chain Length in Rivers

The study will provide fundamental information on how the timing of floods and droughts across years influences water quality (nitrate inputs to rivers), primary production, and the production of animals higher in the food web, such as fish. The researchers will produce a synthesis of research in hydrology and ecology to improve the management of arid land rivers.

John Sabo

Multiscale Effects of Climate Variability and Change on Hydrologic Regimes, Ecosystem Function, and Community Structure in a Desert Stream and Its Catchment

This project focuses on using new statistical techniques that describe hydrological regimes, coupled with long-term measurements of stream structure and processes, to understand how shifts in climate and river discharge regimes on many time scales will influence the ecosystem.

Nancy Grimm John Sabo

Phoenix Area Social Survey

This survey studies the relationships between people and the natural environment in the Phoenix metro area.

Sharon Harlan Nancy Grimm Christopher Boone Amber Wutich Darren Ruddell Rimjhim Aggarwal Dan Childers Stevan Earl Kelli Larson Kerry Smith Paige Warren

Reassessing the Biological Functions of the Plant Type I H+-PPase

Specifying how sugar moves to various tissues within the plant will allow scientists to develop strategies to optimize sugar translocation in crops that increase yield while reducing the environmental impacts of production agriculture.

Roberto Gaxiola Kendal Hirschi

Simon A. Levin Mathematical, Computational and Modeling Sciences Center

The Simon A. Levin Mathematical, Computational and Modeling Sciences Center vision includes: bridging the gap between the biological, environmental, and social sciences and the mathematical sciences; promotion and support of cross-disciplinary and trans-disciplinary research that relies on state of the art computational, modeling and quantitative approaches; and the training of a new generation of computational mathematical, and theoretical scientists whose research is driven by the application of computational, mathematical, modeling and simulation approaches to the solution of problems that will improve the human condition.

Carlos Castillo-Chavez

Swette Center for Environmental Biotechnology

The Swette Center for Environmental Biotechnology manages microbial communities that provide services to society. Most of the services make our society more environmentally sustainable: e.g., generating renewable energy, and making polluted water and soil clean. The microbial services also make humans healthier – directly and indirectly.

Bruce Rittmann Cesar Torres

Testing Macronutrient Imbalance as a Key Factor Limiting Range Expansion in Herbivores

This research project is taking advantage of an ongoing outbreak of the South American locust (Schistocerca cancellata) to test the hypothesis that the ability for S. cancellata to attain a balance of nutrients optimal for growth limits their capacity to maintain persistent high populations over broad regions of South America. Locusts are a major challenge for food security globally, with outbreaks causing 80-100% crop losses. In the future, working collaboratively with government plant protection agencies, this research can be directly applied to strategies to improve livelihoods, human and environmental health, and global food security. Moreover, this award will support postdoctoral and student training, and cross-cultural exchange.

Arianne Cease Jon Harrison

Total: 17