

The role of urban climatology in urban policy

Can urban models inform policy and become more useful to decision-makers?

Sue Grimmond

Environmental Monitoring and Modelling Group, Geography, King's College London

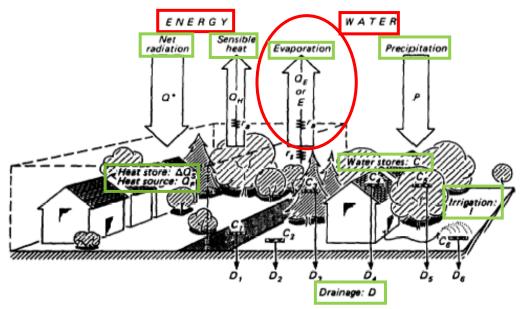
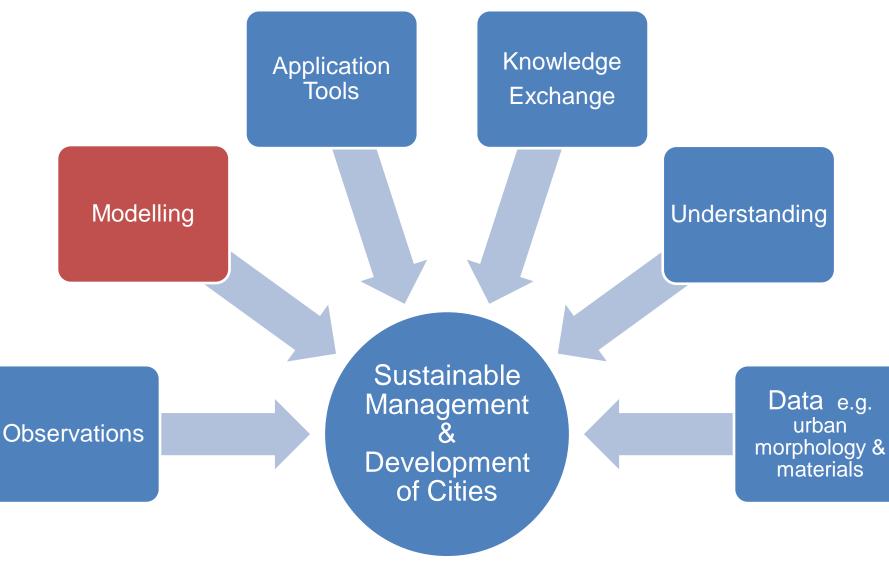


Fig. 1. Schematic of the conceptual framework of the model.

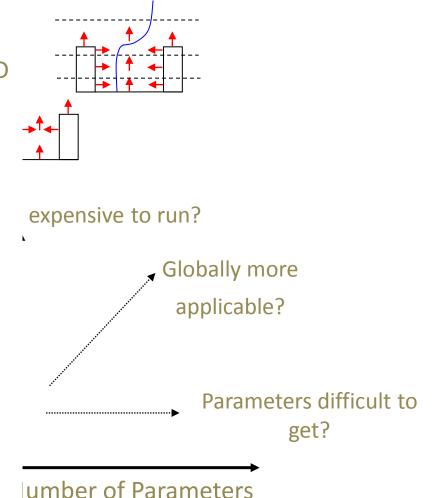

Acknowledgements: Thomas Loridan, Matthew Blackett, Martin Best, PILPSurban community, Many people involved in field measurements and model development; *Funding agencies*: NSF, Met Office, KCL, EUF7 BRIDGE, MegaPoli

WMO:

Sustainable Cities

NG'S

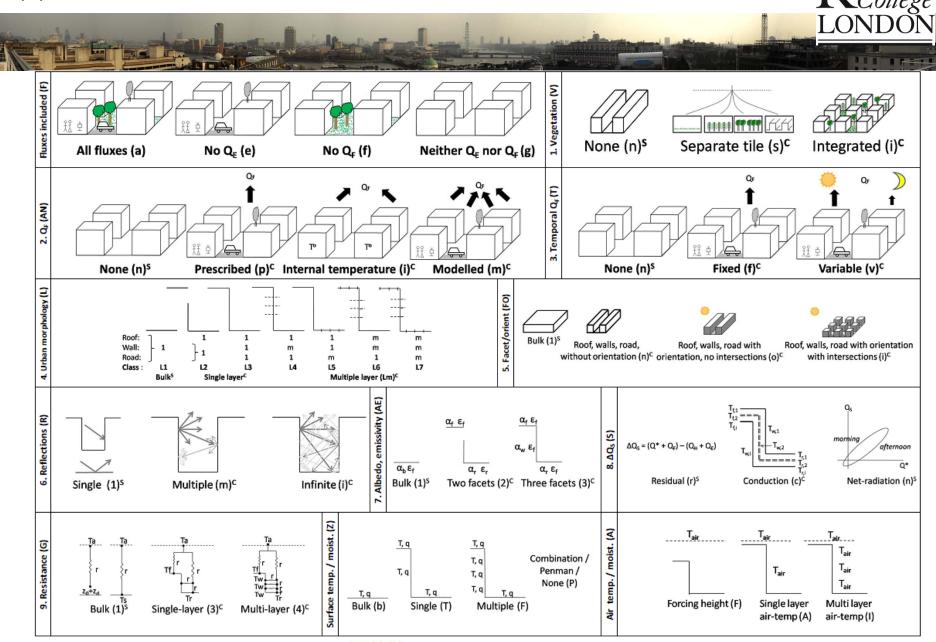
LONDŌN



Grimmond et al. (2009) WCC3

Wide range: Urban Land Surface Schemes

Wide range of applications •Standalone models


- Sensor source areas: TUF2D/TUF3D
- Design: GCTTC
- Land surface schemes for
 - Mesoscale models
 - WRF
 - MM5
 - Meso-NH
 - Global Climate models
 - UM
 - CCSM
 - Operational Forecast Models
 - UK Met Office
 - Meteo France
 - Meteo Swiss

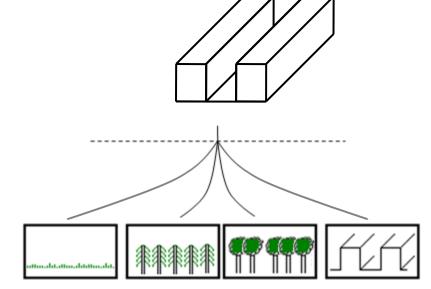
PILPS – Urban: International Urban Energy Balance Model King's Comparison

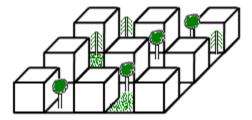
	Code	Model Name	References	Versions	Group	
-32	BEP02	Building Effect Parameterization	Martilli et al. (2002)	1	1	
	BEP_BEM08	BEP coupled with Building Energy Model	Martilli et al. (2002), Salamanca et al. (2009),Salamanca and Martilli (2009)	1	1	
	CLMU	Model - Urban	Oleson et al. (2008a, b)	1	1	
	GCTTC	Green Cluster Thermal Time Constant model	Shashua-Bar and Hoffman (2002; 2004)	1	1	
	IISUCM	Science Urban Canopy Model	Kawamoto and Ooka (2006; 2009a; b)	1	1	
	JULES	Joint Land Environment Simulator	Essery et al. (2003), Best (2005), Best et al. (2006)	4	2	
	LUMPS	Local-scale Urban Meteorological Parameterization Scheme	Grimmond and Oke (2002), Offerle et al. (2003)		1	
	NKUA	Model	Dandou et al. (2005)	1	1	
	MORUSES	Met Office Reading Urban Surface Exchange Scheme	Harman et al. (2004 a,b), Porson et al. (2009)	2	1	
	MUCM	Multi-layer Urban Canopy Model	Kondo and Liu (1998), Kondo et al. (2005)	1	1	
	NJUS	Nanjing University Urban Canopy Model-single layer	Masson(2000), Kusaka (2001)	1	1	
	NJUC-UM-M	Nanjing University Urban Canopy Model-multiple layer	Kondo et al.(2005), Kanda(2005a; b)	1	1	
	NSLUCM / NSLUCMK / NSLUCM-WRF	Noah land surface model/Single-layer Urban Canopy Model	Kusaka et al. (2001), Chen et al. (2004)	3	3	
	SM2U	Soil Model for Submesoscales (Urbanized)	Dupont and Mestayer (2006), Dupont et al. (2006)	1	1	
	SNUUCM	Urban Canopy Model	Ryu et al. (2009)	1	1	
5	SRUM2/SRUM4	Single Column Reading Urban Model tile version	Harman and Belcher (2006), Porson et al. (2009)	4	1	
	SUEB	Slab Urban Energy Balance Model	Fortuniak et al. (2004, 2005)	1	1	
	SUMM Simple Urban Energy Balance Model for Mesoscale Simulation		Kanda et al. (2005a,b; 2007), Kawai et al. 2007, 2009)	1	1	
	TEB	Town Energy Balance	Masson (2000), Masson et al. (2002), Lemonsu et al. (2004)	1	1	
	TEB07	Town Energy Balance 7	Hamdi and Masson (2008)	1	1	
	TUF2D	Temperatures of Urban Facets 2D	Krayenhoff and Voogt (2007)	1	1	
	TUF3D	Temperatures of Urban Facets 3D	Krayenhoff and Voogt (2007)	1	1	
	VUCM	Vegetated Urban Canopy Model	Lee and Park (2008)	1	1	

Approaches Taken: Model Classification

Vegetation inclusion

None


assumed to be no vegetation present


Separate Tile

- vegetation and built parts of the surface are treated separately
- do not interact until a layer above the surface scheme
- fluxes are a spatially weighted mean

Integrated

 vegetation is within the tile that has the build facets so can interact/respond to the exchanges associated with this layer of the model

Layers resolved

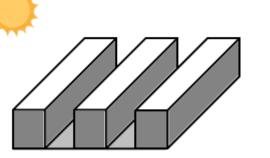
Single layer
 Multi-layer

Grimmond et al. (2010) JAMC

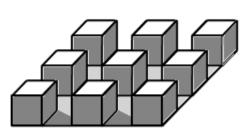
NG'S

ollege

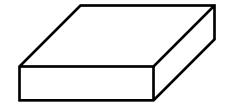
OND

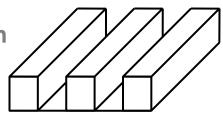

Facets and aspects resolved

Whole


individual walls, roof, road are not resolved

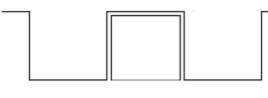
Roof, Wall and road are resolved butwithout orientation

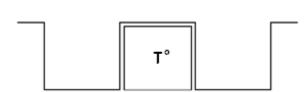

- ⇒ sunlit and shaded facets not resolved
- Roof, Walls and road are resolved with orientation
 - ⇒ during the daytime there maybe sunlit and shaded facets

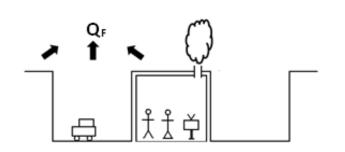


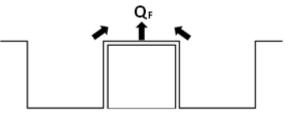
Anthropogenic heat flux

None

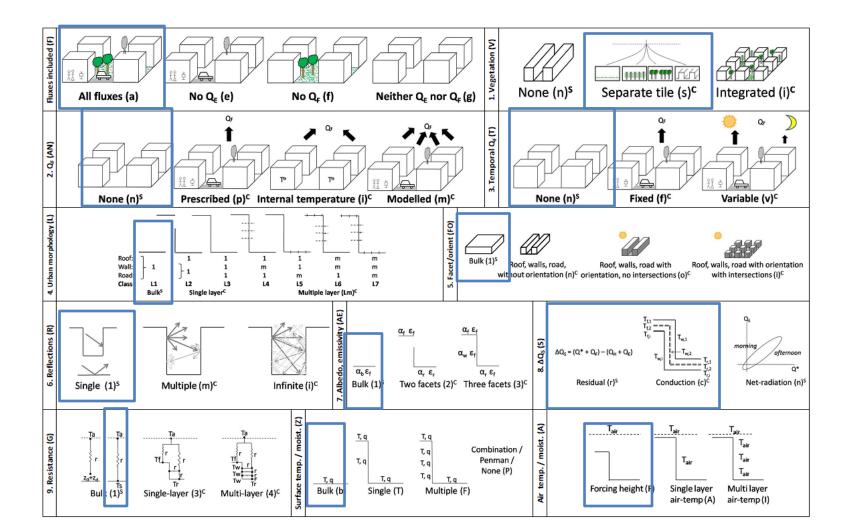

Flux is assumed to be 0 W m⁻² or not to exist

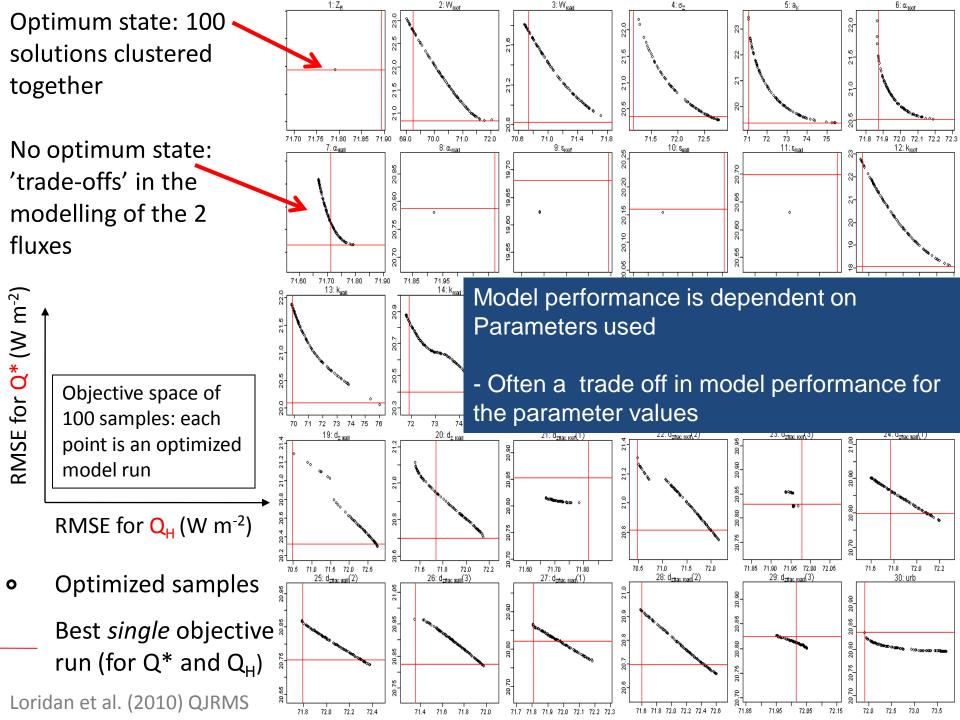

Prescribed


- Flux value is prescribed, consider either:
 - Some components (partial)
 - All components


Internal Temperature

- An internal temperature is prescribed which is used to calculate the other fluxes
- Modelled
 - All or components of the flux are modelled




Characteristics of an Individual Model

JULES Urban Tile (Best 2005)

ING'S College

		Parameter	Min	Max	Default	Parameter Definition	Reference (default)	
Models require large		Z _R	12.6	18.6	15.6	Roof height (m)	LE04	
		W _{roof}	11.2	31.2	21.2	Roof width (m)	LE04	
number of Input		W _{road}	3.6	15.6	9.6	Road width (m)	LE04	
		σ _z	1.0	15.0	9.0	Standard deviation of roof height (m)	-	
Parameters	4 5	a _k	0.5	2.0	1.29	Empirical coefficient from Kanda et al. (2007)	KA07	
T alameters	6	α _{roof}	0.05	0.4	0.22	Roof albedo (-)	LE04,DP06	
	7	α_{wall}	0.05	0.55	0.20	Wall albedo (-)	LE04, DP06	
	8	α _{road}	0.05	0.25	0.08	Road albedo (-)	LE04,DP06	
	9	٤ _{roof}	0.85	0.98	0.90	Roof emissivity (-)	LE04, DP06	
	10	ε _{wall}	0.85	0.98	0.90	Wall emissivity (-)	LE04, P06	
			ε _{road} 0.85 0.98 0.94 Road emissivity (-) k _{roof} 0.19 1.5 0.90 Conductivity of roof materials (W m ⁻¹ K ⁻¹)			LE04,DP06		
						R006		
		k _{wall}	0.09	2.3	0.55	Conductivity of wall materials (W m ⁻¹ K ⁻¹)	R006	
NOAH/SLUCM:	14	k _{road}	0.03	2.1	1.77	Conductivity of road materials (W m ⁻¹ K ⁻¹)	R006	
NUATI/SLUCIVI.	15	C _{roof}	0.6*10 ⁶	2.3*10 ⁶	1.77*10 ⁶	Heat capacity of roof materials (J m ⁻³ K ⁻¹)	RO06	
Total:	16	C _{wall}	0.4*10 ⁶	2.3*10 ⁶	1.67*10 ⁶	Heat capacity of wall materials (J m ⁻³ K ⁻¹)	R006	
IUtal.	17	C _{road}	0.3*10 ⁶	2.3*10 ⁶	1.89*10 ⁶	Heat capacity of road materials (J m ⁻³ K ⁻¹)	RO06	
68 parameters	18	d _{z,roof}	0.05	0.5	0.32	Total thickness of roof layers (m)	RO06	
·	19	d _{z,wall}	0.1	1.0	0.26	Total thickness of wall layers (m)	RO06	
	20	d _{z,road}	0.5	2.0	1.24	Total thickness of road layers (m)	R006	
	21	d _{zfrac,roof} (1)	0.02	0.1	0.062	Fraction of d _{z,roof} covered by layer 1	R006	
	22	d _{zfrac,roof} (2)	0.1	0.49	0.468	Fraction of d _{z,roof} covered by layer 2	R006	
	23	d _{zfrac,roof} (3)	0.1	0.4	0.375	Fraction of d _{z,roof} covered by layer 3	R006	
1	24	d _{zfrac,wall} (1)	0.02	0.1	0.038	Fraction of d _{z,wall} covered by layer 1	RO06	
	25	d _{zfrac,wall} (2)	0.1	0.3	0.154	Fraction of d _{z,wall} covered by layer 2	RO06 RO06	
	26 27	d _{zfrac,wall} (3)	0.1	0.59 0.1	0.577 0.032	Fraction of d _{z,wall} covered by layer 3	RO06	
W _{roof} W _{road}	27	d _{zfrac,road} (1) d _{zfrac,road} (2)	0.02	0.1	0.16	Fraction of d _{z,road} covered by layer 1 Fraction of d _{z,road} covered by layer 2	RO06	
\uparrow	29	d _{zfrac,road} (2)	0.1	0.49	0.10	Fraction of $d_{z,road}$ covered by layer 3	RO06	
Z _A	30	urb	0.764	0.964	0.864	Urban fraction (-)	LE04	
	31	R _{cmin}	40	400	170	Stomatal resistance (s m ⁻¹)	CD01 (+DP06)	
	32	CITIII		100	Radiation stress parameter (-)	CD01 (+DP06)		
	33	h _s	36.25	54.56	39.18	Vapor pressure deficit parameter (-)	CD01 (+DP06)	
Z _R	34		0.10	0.30	0.23	Vegetation albedo (-)	CD01 (+DP06)	
	35	α _{veg}	0.88	0.97	0.93	Vegetation emissivity (-)	CD01 (+DP06)	
Z _C	36	E _{veg}	0.03	1.6		Roughness length for momentum - vegetation (m)	CD01 (+DP06)	
	37	Ξ _{0, veg} Θ _s	0.339	0.476	0.465	Maximum soil moisture content (m ³ m ⁻³)	CD01 (+DP06)	
	38		0.236	0.470	0.382	Reference soil moisture content (m ³ m ⁻³)	CD01 (+DP06)	
\downarrow \downarrow \downarrow	39	Θ _{ref}						
		Θ _w	0.010	0.2	0.103	Wilting point (m ³ m ⁻³)	CD01 (+DP06)	
	40 41	Θ _{dry}	0.010	0.2	0.103	Dry soil moisture content (m ³ m ⁻³)	CD01 (+DP06)	
		LAI	1.0	5.0	3.0	Leaf Area Index (m ³ m ⁻³)	CD01 (+DP06)	
		σ _f	0.1	0.8	0.7	Green vegetation fraction (-)	CD01 (+DP06)	
		QTZ	0.10	0.92	0.35	Soil quartz content (-)	CD01 (+DP06)	
Laridan at al (2010) OUDME	44	C _{soil}	0.5*106	4.0*10 ⁶	1.26*106	Soil heat capacity (J m ⁻³ K ⁻¹)	CD01 (+DP06)	
Loridan et al. (2010) QJRMS	45	CZIL	0.01	1.0	0.1	Zilitinkevitch parameter	CH97	

(a)	Parameter	Default	Optimum	<mark>Gain in Q*</mark> (ΔRMSE)	Impact on Q _H (ΔRMSE)	Impact on Q (ΔRMSE)	E	SI
1	α_{roof}	0.22	0.135	-12.39	6.35	0		
2	а _к	1.29	0.529	-7.60	6.17	0		
3	α_{wall}	0.2	0.052	-6.62	0.56	0		Ra
4	α_{veg}	0.23	0.102	-6.36	1.17	-0.74		١
5	W _{roof}	21.2	11.2	-3.54	-2.89	0		ł
6	W_{road}	9.6	15.6	-3.21	-1.03	0		k
7	٤ _{roof}	0.9	0.851	-2.81	0.20	0		
8	f _{urb}	0.864	0.764	-1.66	0.64	-3.73	(b)	Par
9	σ _z	9	14.946	-1.62	1.06	0	(~)	
10	ε _{wall}	0.9	0.98	-1.07	-0.09	0	1	k
11	k _{wall}	0.55	2.299	-0.97	-2.22	0		Ч
12	ε _{veg}	0.93	0.880	-0.61	0.04	-0.08	2	d,
13	d _{z,wall}	0.26	0.894	-0.57	0.41	0	3	W
14	k _{roof}	0.9	0.363	-0.53	5.81	0		k
15	C _{roof}	1769000	604674	-0.39	2.91	0	4	
16	α_{road}	0.08	0.05	-0.37	-0.01	0	5	
17	ε _{road}	0.94	0.98	-0.30	-0.03	0	6	
18	C _{wall}	1676000	2299510	-0.29	-0.83	0	7	d _{zfra}
19	d _{z,roof}	0.32	0.496	-0.26	1.69	0	8	d
20	7.	15.6	18 500	-0.24	-0.15	0	9	F
	Impo	ortant t	o knov	v which	parame	ters	10	V

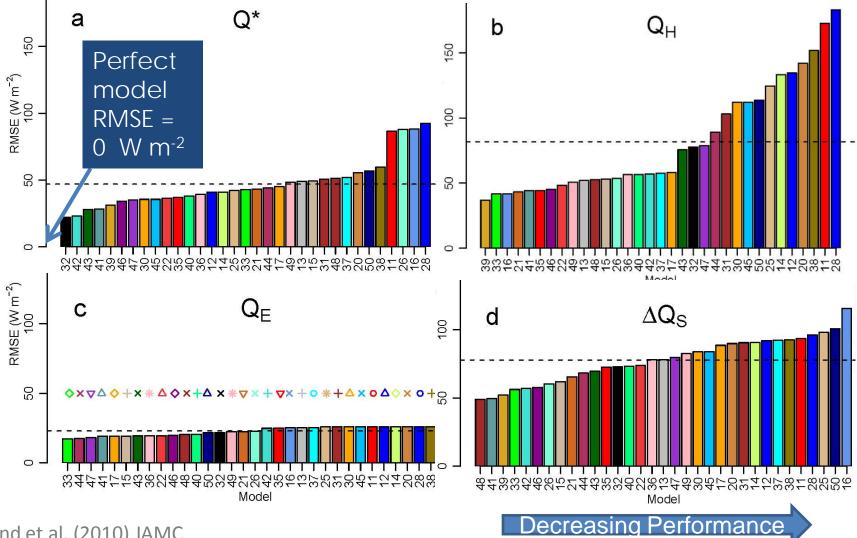
Important to know which **parameters** the model is **most sensitive** to

For Policy applications: important to know the model can **respond** to the **appropriate changes** in parameter values

Loridan et al. (2010) QJRMS

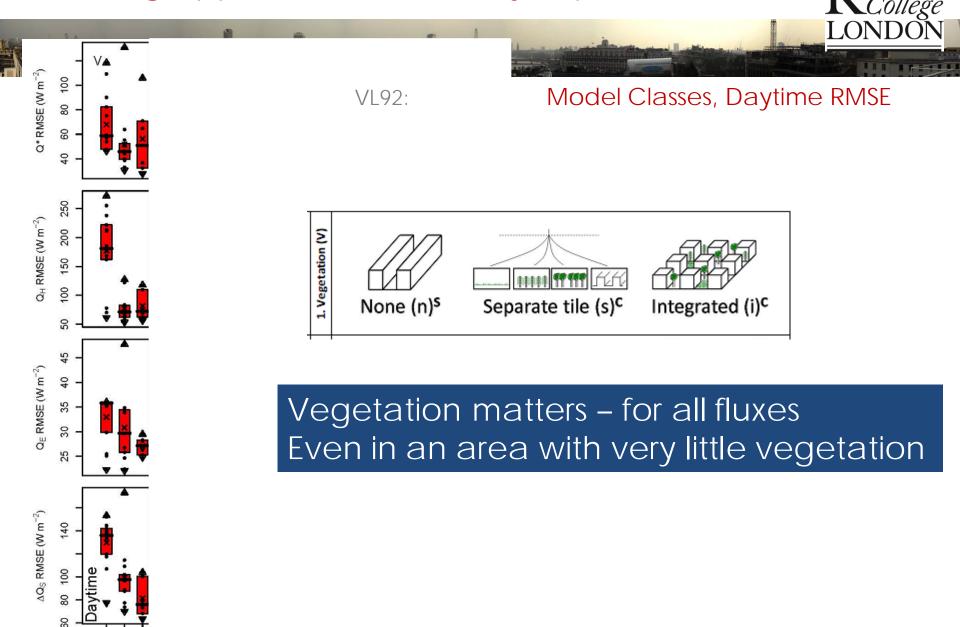
SLUCM sensitivity KING

Rankings for Q* and Q_H : value change which leads to the best improvement from the default

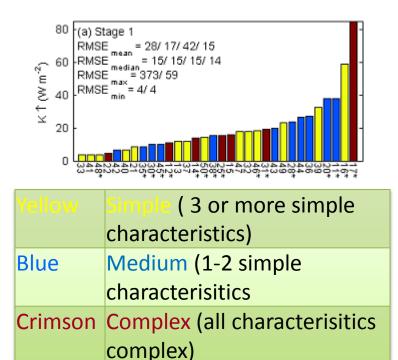

	(b)	Parameter	Default	Optimum	<mark>Gain in Q_H</mark> (ΔRMSE)	Impact on Q* (ΔRMSE)	Impact on Q _E (ΔRMSE)
					(. ,	· ,
_	1	k _{roof}	0.9	1.495	-3.38	0.78	0
	2	d _{z,roof}	0.32	0.16	-2.93	0.49	0
	3	W _{roof}	21.2	11.2	-2.89	-3.54	0
		-				0.01	
	4	k _{wall}	0.55	2.3	-2.22	-0.96	0
	5	а _к	1.29	1.999	-1.90	7.12	0
	6	σ _z	9	3.168	-1.80	7.55	0
_	7	d _{zfrac,roof} (2)	0.468	0.228	-1.62	0.17	0
_	8	d _{z,wall}	0.26	0.1	-1.53	-0.18	0
	9	R _{cmin}	170	40.234	-1.22	0	-2.25
	10	W _{road}	9.6	15.6	-1.03	-3.21	0
	11	C _{ZIL}	0.1	0.999	-0.91	0	0.70
	12	C _{wall}	1676000	2299910	-0.84	-0.29	0
	13	α _{roof}	0.22	0.248	-0.79	5.95	0
	14	$d_{zfrac,wall}(3)$	0.57	0.146	-0.69	-0.14	0
	15	C _{roof}	1769000	2283860	-0.69	0.13	0
	16		0.23	0.298	-0.47	3.70	0.47
	10	LAI	3	4.995	-0.47	0	-0.76
	17	L/ (1	3	4.555	-0.40	0	-0.70
	18	d _{zfrac,road} (2)	0.16	0.1	-0.42	-0.06	0
	19	$d_{zfrac,wall}(1)$	0.038	0.1	-0.38	-0.07	0
	20	d _{z,road}	1.24	0.663	-0.29	0.23	0

Noah/SLUCM: Results with Marseille data ${ m K}$

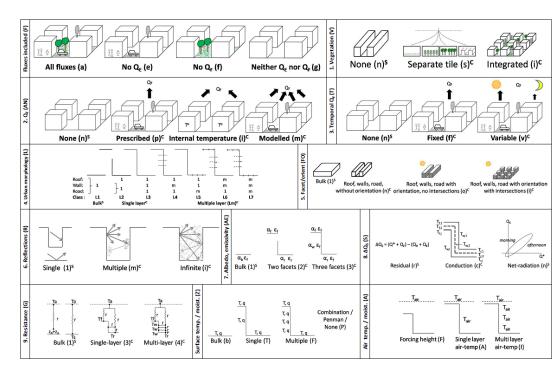
- Most sensitive to roof-related parameters (a dense European city centre)
 - implications for default values for urban land use
- For Q*: albedo values most critical
- For Q_H: mainly sensitive to roof (wall) conductivities & thickness of roof materials
 - Road characteristics: do not significantly impact model performance
 - higher degree of uncertainty acceptable
- Difficult to correctly partition turbulent fluxes: Q_H, Q_E
 - Vegetation class with a low stomatal resistance (e.g. "cropland / grassland mosaic" or "grassland") recommended
- Scheme appears mostly sensitive to "objectively determined" parameters:
 - almost impossible to derive all inputs for every single urban grid cell in a domain → need generic urban classes
 - choice of values to best characterise each class → trade-off

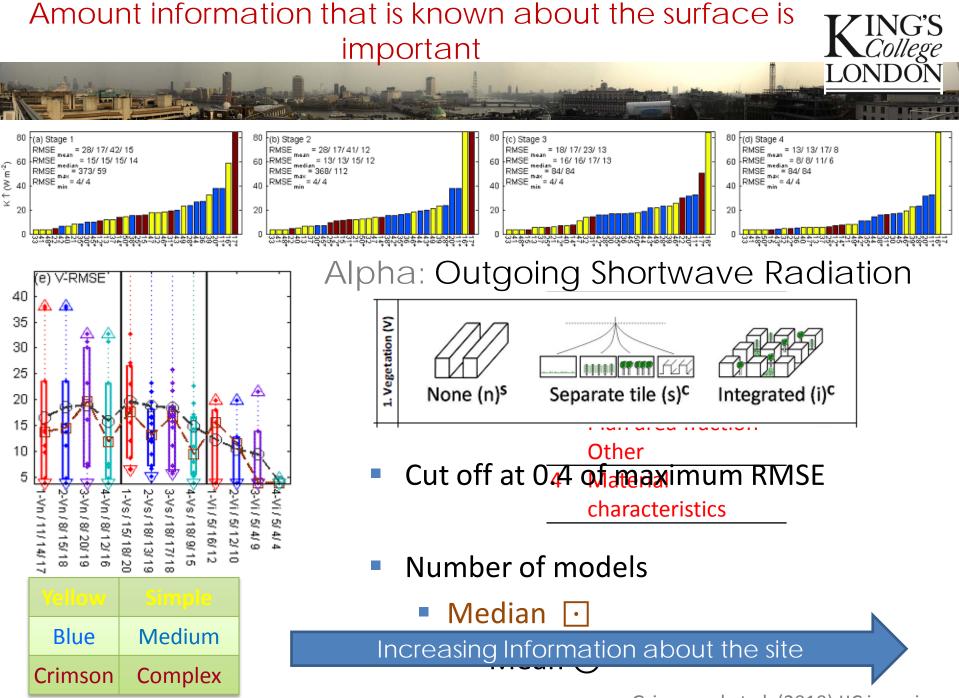

VL92: Ranked RMSE, All hours (N=312), Four Fluxes, 33 models

Modelling Approach can be very important


5

ş




Overall Models approaches can be classified

Alpha Stage 1, Outgoing Shortwave Radiation

- Mean observed flux: 54.2 W m⁻²
- *models without radiative closure
- N=32/N=31/ w.out closure/ w. closure

Alpha: Outgoing Shortwave Radiation

4-Fon / 16/ 16/ 15 3-Fon / 16/ 17/ 18 2-Fon / 16/ 13/ 17

2-F00/6/15/12 1-F00/6/8/11

3-F01

1-F01

œ

15/4/

4-F01 /

15/4/5 15/4/8 1-F0n / 16/ 18/

ø

Blue

Crimson

4-F00 3-F00

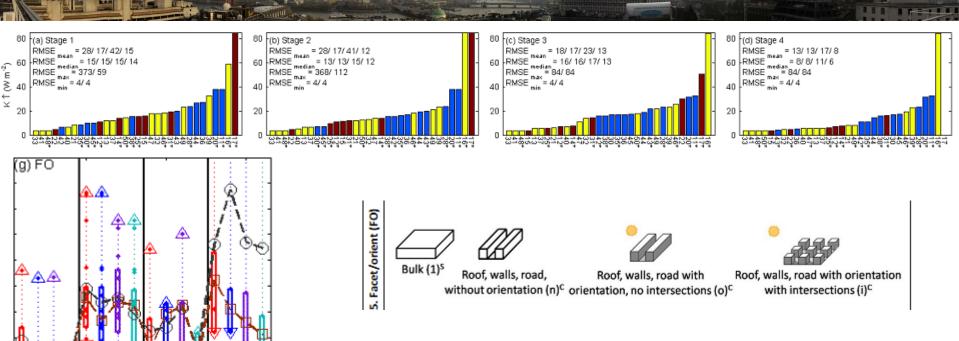
/6/7/7 /6/16/1

5

Medium

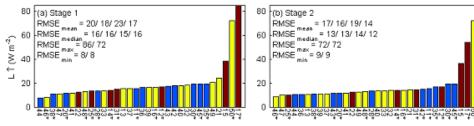
Complex

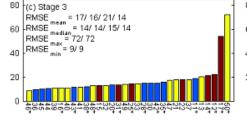
1-F0i/4/21/28

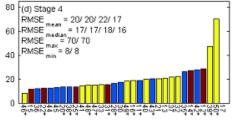

3-FOI/

14/11/27 14/13/28

4-FOI/

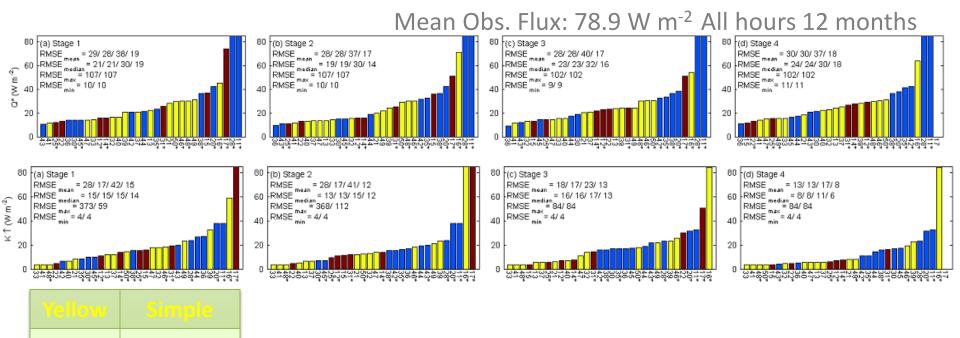

2-F01/


/4/16/39

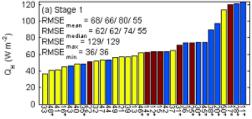


- Cut off at 0.4 of maximum RMSE
- Number of models
 - Median
 - Mean ···

Alpha: Outgoing Longwave Radiation Mean Obs. Flux: 389.6 W m⁻² All hours 12 months


Alpha: Net All Wave Radiation

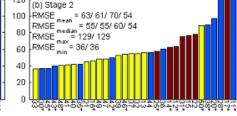
Blue

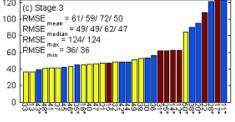

Crimson

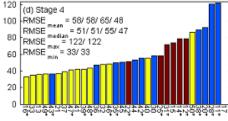
Medium

Complex

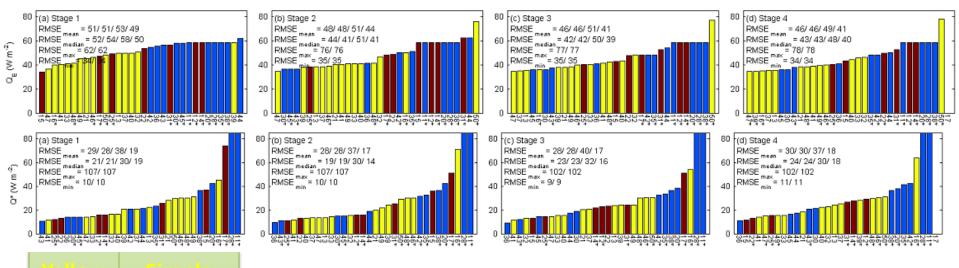
Alpha: Turbulent Sensible Heat Flux Mean Obs. Flux: 37.9 W m⁻² All hours 12 months




Medium


Complex

Blue


Crimson

Alpha: Turbulent Latent Heat Flux

Mean Obs. Flux: 32.5 W m⁻²

Can urban climate models inform policy and become more useful to decision-makers?

and and a stand and a stand

- Yes ... Wide range of models exist (a lot of development is occurring, more is needed)
- Things that need to be considered before use:
- Which is the appropriate model(s) to use for the application?
 - Are all the appropriate processes considered?
 - Does the model(s) perform well relative to observations?
 - For all variables? (If correct for some variables but not others is it right for the wrong reason?)
- Models require a large number of parameters
 - Does the model respond appropriately?
 - What are the most important to be correctly specified?
- Are the model outputs measurable indicators that Policy makers can use/want?
- Essential to have observations over a wide range of conditions to evaluate models

- Significant efforts internationally to develop urban land surface schemes
 - Wide range of approaches taken
 - In general:
 - Best ability to model K_{\uparrow} (Q*)
 - Poorest: Q_E (even in areas with very low Q_E)
 - Trade off between flux performance
 - No model clearly performs best/worst
- Model comparison: Developments in a number of the participating models
- Recent past: large number of observations of energy balance fluxes in a variety of urban areas around the world
 - Still wide range of urban areas not represented
 - Few continuous measurements
 - Observational results show wide range of energy flux partitioning (& CO₂ fluxes)
 - Need more data to understand the broad range of urban morphologies and land cover variations