Evaluating the effects of vertical urban forms on land surface temperature using Google Street View images

Introduction

Incorporating the vertical urban form in surface temperature assessments is important, because shading effects are not well captured in traditional planar view remote sensing data. The impact of vertical urban forms on land surface temperature (LST) has not been sufficiently addressed due to a lack of high-resolution urban form data ^(3, 4).

To fill this gap, this study employs a novel spherical urban fraction metric derived from segmented 360° Google Street View imagery ⁽²⁾. Google provides an immense collection of Street View images, enabling city-wide fine-scale measurements to address vertical urban form dimensions. The study area is the city of Phoenix, AZ which is made up of 474 census tracts. In this study, we:

- 1. Compared the novel spherical fractions with the planar land cover fractions derived from high resolution aerial imagery ⁽¹⁾.
- 2. Examined the relationships of the two datasets with LST using correlation and linear regression analysis.
- 3. Developed robust global and local models⁽⁵⁾ to explain the LST variations by combining spherical, planar and social variables.

Data

Google Street View Image Classification

(1) 90° Field of view images (2) Image classification from Google Street View

using fully convolutional network

(3) Calculate the percentage of each class based on a cube-to-sphere projection

% Tree

*The overall accuracy of the spherical dataset is 95% $^{(2)}$. The overall accuracy of the planar (NAIP land cover) dataset is 91.8% $^{(1)}$.

Y. Zhang¹, A. Middel^{2, 3}, B.L. Turner II^{1, 3} ¹School of Geographical Sciences and Urban Planning, Arizona State University ²Department of Geography and Urban Studies, Temple University ³Julie Ann Wrigley Global Institute of Sustainability, Arizona State University

Method and Results

1. Comparisons between the Spherical and Planar Fractions at Census Tract Level

Fig. 1 Boxplots of the Spherical and Planar Fractions

Sky Building Tree Pervious Impervious

2. Correlation and Global Regression Analysis with Land Surface Temperature (Day and Night)

Table 2 Pearson's Correlation Coefficients with LST

Spherical Fraction	Day LST	Night LST	Planar Fraction	Day LST	Night LST	Global Regression		Spherical	Planar	Spherical + Planar	Spher Plan
Sky	.53**	.11*	Soil	05	30**		P ²	/18	38	57	
Building	.24**	.35**	Building	.10*	16**	Day	N	.40	.50	.57	- i
Tree	64**	39**	Tree	51**	36**		Adj. R ²	.47	.37	.56	.7
Pervious	50**	50**	Grass	37**	28**	Night	R ²	.24	.37	.51	.5
Impervious	.40**	.41**	Impervious	.36**	.58**	Man	Adj. R ²	.24	.37	.50	.5

** Significant at 0.01 level, * Significant at 0.05 level.

3. Local Regression Analysis with Land Surface Temperature (Day)

Table 4 Comparisons of
Global and Local Regression

Day LST	Global Model	Local Model		
R ²	.71	.85		
AICc	1188	1067		
Moran's I	.2**	.005		
Residual Pattern	Clustered	Random		

-0.74 - -0.52

Findings

- spherical fraction (walls) has no correlation with the planar fraction (rooftops).
- **Acknowledgements**

This research was supported by the Central Arizona-Phoenix Long-Term Ecological Research program (NSF Grant No. BCS-1026865), National Science Foundation (NSF) under Grant No. SES-0951366, NSF DNS Grant No. 1419593 and USDA NIFA Grant No. 2015-67003-23508, the Julie Ann Wrigley Global Institute of Sustainability. The research was undertaken in the Environmental Remote Sensing and Geoinformatics Lab, Arizona State University. References

1. Li, X., Myint, S. W., Zhang, Y., Galletti, C., Zhang, X., & Turner II, B. L. 2014. Object-based land-cover classification for metropolitan Phoenix, Arizona, using aerial photography. International Journal of Applied Earth Observation and Geoinformation, 33, 321-330. 2. Lukasczyk, J., Middel, A., Zakrzewski, S., Arnold, M., Maciejewski, R., Urban Form and Composition of Street Canyons: A Human-Centric Big Data and Deep Learning Approach. Landscape and Urban Planning (under review) 3. Middel, A., J. Lukasczyk and R. Maciejewski. 2017. Sky view factors from synthetic fisheye photos for thermal comfort routing -- a case study in Phoenix, Arizona. Urban Planning 2(1):19-30. 4. Turner II, B.L., 2016. Land system architecture for urban sustainability: new directions for land system science illustrated by application to the urban heat island problem. Journal of Land Use Science 11(6) 689-697. 5. Fotheringham, A. S., Brunsdon, C., & Charlton, M. 2003. Geographically weighted regression. John Wiley & Sons, Limited.

Table 1 Paired T-Test

	Sphorical	Planar	Correlation	Paired Differences		
	mean	mean	Coeff.	Mean	Std. Deviation	
Building	8.1 21.4 .06		-13.3**	4.8		
Tree	11.9	8.8	.48**	3.1**	4.5	
Impervious	36.4	31.9	.33**	4.4**	10.8	

Soil Building Tree Grass Impervious

Table 3 Global Regressions with LST

0.07 - 0.11 0.40 - 0.60 -0.13 - -0.09 1. The spherical factions have less variations compared to planar fractions, because they are biased towards street views. 2. At census tract level, the spherical and planar fractions for tree and impervious classes are significantly correlated. For the building class, the

3. Compared to using planar fractions alone, adding spherical fractions captures a significant amount of explained variance in LST. R² increased by about 0.2. Adding social variables further improves the R^2 to 0.71 for the daytime regression.

4. Compared to the global model, the local model is valuable in uncovering the spatially varied relationships between urban forms and LST, and addressing the issue of spatial autocorrelation. Parameter estimates from the local model highlight specific areas in Phoenix that are strongly affected by certain urban forms. Identifying these areas will greatly contribute to targeted heat mitigation strategies for the summer.

Please send comments or questions to yzhan169@asu.edu **Thank you!**

Global Coeff

= 0.012

Local Coeff.

0.02 - 0.03

0.04 - 0.06

ASTER LSTs

Night - 2015 July

% Hispanic

Geographical Sciences & Urban Planning