Impact of Shade Trees on Urban Hydroclimate for Phoenix and the Continental United States

Background and Summary

evapotranspirative cooling.

How will the urban hydroclimate be impacted by shade trees?

continental United States.

Representing urban trees in WRF

modify the view factors (VFs) between them.

Assumptions:

Study Areas

Operational Global Analysis data $(1^{\circ} \times 1^{\circ}, 6\text{-}h \text{ temporal frequency})$

Land surface processes: Noah land surface model + single layer UCM

Phoenix Metropolitan Area

Continental US

- One domain (resolution: 20 km)

Conclusion and Perspective

> Urban trees were implemented into the single-layer UCM coupled with the

> Urban trees reduced 2-m air temperature, surface temperature, and ground heat flux, but increased relative humidity for the Phoenix metropolitan area.

> The cooling effect of trees is greater in nighttime than in daytime, primarily due to the reduced heat storage in engineering materials resulted from the

> Other ecohydrological processes (e.g. ET) remain open for future research.

> We are applying this modeling system to the continental US with one year meteorological data and assessing seasonal and geographical effects.

Acknowledgement

The authors would like to acknowledge the following financial supports for this study: National Science Foundation (NSF) under grant number SES-1462086,

References

Wang, Z.-H., 2014. Monte Carlo simulations of radiative heat exchange in a street canyon with

Upreti, R., Wang, Z.-H., Yang, J., 2017. Radiative shading effect of urban trees on cooling the

Yang, J., Wang, Z.-H., Chen, F., Miao, S., Tewari, M., Voogt, J.A., Myint, S., 2015. Enhancing hydrologic modelling in the coupled Weather Research and Forecasting-urban modelling