Nitrogen gas emissions from stormwater retention basins during wet weather events in the Phoenix Metropolitan area: an additional ecosystem service?

E.K. Larson¹ and N. B. Grimm^{1,2}

¹School of Life Sciences and ²Global Institute of Sustainability Arizona State University, Tempe, AZ

Do retention basins improve stormwater quality?

- Stormwater runoff is known to carry high levels of metals and nutrients such as nitrogen (N).
- Retention basins collect local runoff and potentially concentrate these pollutants in the soil and infiltrating water.
- Description of the However, plants and microbes have the ability to transform and remove nutrients from the water.
- ◆ Denitrification, a microbial process, permanently removes nitrate (NO₃⁻) from the system, while producing the gases N₂ and N₂O.

We wanted to assess the ability of two types of retention basins, one xeriscaped and one grassy, to remove NO_3^- from incoming storm runoff.

Tapping fire hydrants to flood basins

We simulated a 1" storm in each basin with water from nearby hydrants. Water was directed into a pool to slow it down, and then through hoses to the basin. We pre-treated the basin with a heavy N isotope (15N in NO₃⁻) to trace the fate of the N added. Samples were then taken throughout the day to assess water concentrations and gas losses (see photos below).



Figure 1: Expected vs. actual mass of NO₃ – N by time for Grassy (A) and Xeric (B) basins. Green arrows indicate when the last water was delivered. In the case of B, a "slug" of NO₃ was added with the last volume of water.

gas losses (see photos below).

Dhoto cradite: Vinca Dalarm

- Water nitrate concentrations indicate NO₃⁻removal, especially in grassy basins (Figure 1)
- Gas emissions from basins via denitrification are a small portion of NO₃⁻ removal (Figure 2)
- Overall N₂O emissions from any process are significantly higher in xeric basins and grassy basins (Figure 3)

Basins are ameliorating NO₃⁻ inputs, but potentially producing considerable amounts of N₂O, a greenhouse gas

- Incoming data will allow complete analysis via a full mass-balance approach
- Trade-offs between aesthetics, recreation, water use, and stormwater improvements can be assessed for each basin design

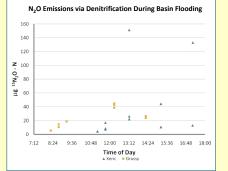


Figure 2: N₂O emissions via denitrification during basin flooding. Except for a couple outliers, the grassy and xeric basins produced similar, though comparatively small, amounts of N₂O. Note the change in units on the y-axis when compared to Figure 1.

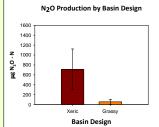


Figure 3: Overall N_2O emissions over 24 hours from any process by basin design. Data calculated from gas fluxes in chambers after water has receded and then extrapolated to 24 hours.

Special thanks to all of our field and lab help: Rebecca Hale, Stevan Earl, Bony Ahmed, Lin Ye, Jolene Trujillo, Katie Mayer.

This project would not have been possible without you!

Thank you to Vince Palermo and Jon Nicol from GIOS for photos and video. Check out our yideo on the CAP LTEN website!

This project was funded by CAP LTER Graduate Student Summer Grant, by NSF DDIG Award DEB-0808524, and a C. Lisa Dent Memorial Fellowship.