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educators at all levels
recognize the need to teach
students to understand
complex systems that are
Interactive, dynamic and
hierarchical



models are increasingly
used to represent,
understand, and
communicate complex
systems



models are recognized as an
integral tool for
understanding complex
systems — such as the water
and climate systems — and
for education and decision
making
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The Very, Very Simple Climate Model Activity

[ Instructions j

| Step Forwward |

Carbon Dioxide Emissions
(Gigatons Carbon per Year)

| 9 GIC per year v |

Time step size:

[5 years s ]

Show which graph?

| Al Three v

[ Start Over ]

[ Change Settings ] [ Credits ]

http://spark.ucar.edu/activity/very-very-
simple-climate-model-activity




efforts to enhance the
contributions of water and
climate models to decision
making, however, have met
with mixed success



Essentially, all
models are
wrong, but
some are

useful.
- George E. P. Box




one major challenge stems
from differences in how
scientists and decision
makers understand,
communicate and visualize
uncertainty



Uncertainty iike, 2007)

In a particula_r situation more than one outcome is
consistent with our expectations

— Ignorance - We simply do not know — is fundamentally
iIrreducible

— Risk — We know the probability distributions of possible
outcomes — is quantifiable
Objective uncertainty — complete and accurate
characterizations of the entire set of outcomes
associated with a particular set of expectations

Subjective uncertainty — our judgments about how to
characterize the entire set of outcomes

In almost all situations outside closed systems, science
IS limited to providing a rigorous, formalized expression

of subjective uncertainties
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FIGURE 2
Historical Supply and Use' and Projected Future Colorado River Basin Water Supply and Demand’

25

|
Historical Supply and Use : Projected Future Supply and Demand
|
|
20 : Projected Water Demand
2 I
£ :
[~ I
- I
S 15 I
= l
@
E Water Supply 1
= g i ! Projected Water Supply
K 10-year Running Average
- X H107yeariaumiting fuerage) ' (10-year Running Average)
I
Water Use H
(10-year Running Average) :
I
1
5 l
}
1
I
I
1
I
oa\ ~ oo o oo (ol (==} ~ oo ~ o~ oo o~ o~ oo o~ :O ~ o ~s (=] ~ oo ~ oo ~ [==] o~
2 ESEESFLEEREEEREEEZEZR 88888888 ¢

1\f\z‘ater use and demand include Mexico's allotment and losses such as those due to reservoir evaporation, native vegetation,
and operational inefficiencies.

Bureau of Reclamation. (2012). Colorado River Basin Water Supply and Demand Study: Study
Report (pp. 89). Boulder City, NV: U. S. Department of Interior, Bureau of Reclamation.
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Percent of Initial Groundwater

Case Example: Phoenix, Arizona

Scenario: Strong Groundwater and Demand Management
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scientists tend to frame
uncertainty in probabillistic
terms and communicate
uncertainty through
statistical methods



whereas decision makers
may also frame uncertainty
In political terms based on
perceived costs of being
wrong



while uncertainty is being
reduced In some climate
science domains, uncertainty
IS Increasing in other areas



“The uncertainty in
ARS’s climate
predictions and
projections will be
much greater than
in previous |IPCC

reports...’

J

COMMENTARY

More knowledge, less certainty

KEVIN TRENBERTH

Major efforts are underway to improve climate models both for the advancement of science and
for the benefit of society. But early resuits could cause problems for the public understanding of

climate change.

the Intergovernmental Panel on
Climate Change (IPCC) don’t do
predictions, or at least they haven’t up
until now". Instead the scientists of
the IPCC have, in the past, made
projections of how the future climate
could change for a range of ‘what-
if” emissions scenarios. But for its
fifth assessment report, known as
AR5 and due out in 2013, the UN
panel plans to examine explicit
predictions of climate change
over the coming decades. In AR5’s .
Working Group I report, which w
focuses on the physical science of
climate change, one chapter will
be devoted to assessing the skill of
climate predictions for timescales out
to about 30 years. These climate forecasts,
which should help guide decision-makers
on how to plan for and adapt to change,
will no doubt receive much attention.

Another chapter will deal with longer-
term projections, to 2100 and beyond,
using a suite of global models. Many of
these models will attempt new and better
representations of important climate
processes and their feedbacks — in other
words, those mechanisms that can amplify
or diminish the overall effect of increased
incoming radiation. Including these
elements will make the models into more
realistic simulations of the climate system,
but it will also introduce uncertainties.

So here is my prediction: the
uncertainty in AR5’s climate predictions
and projections will be much greater
than in previous IPCC reports, primarily
because of the factors noted above. This
could present a major problem for public
understanding of climate change. Is it
not a reasonable expectation that as
knowledge and understanding increase
over time, uncertainty should decrease?
But while our knowledge of certain factors
does increase, so does our understanding
of factors we previously did not account
for or even recognize.

T he climate scientists that comprise

Climate models projact targe decreasas In permafrost
by 2100. Some models used for tha IPCC's next
assessment wall Include Important feedbacks
associated with increased releasas of the greenhousa
gasas methane and carbon dioxide. Image adaptad
from ref. 9.

EROM PRO.IFCTION T0 PREDICTION

In previous IPCC assessments', changes
in the atmospheric concentrations of
greenh gases and Is over time
were gauged using ‘idealized emissions
scenarios, which are informed estimates
of what might happen in the future under
various sets of assumptions related to
population, lifestyle, standard of living,
carbon intensity and the like. Then the
changes in future climate were simulated
for each of these scenarios. The output of
such modelling is usually referred to as a
projection, rather than a prediction or a
forecast. Unlike a weather prediction, the

mature reparts cimate change | VOL 4 | FEBRUARY 2010 | wwne nature.comireposts/climatechange

models in this case are not initialized with
the current or past state of the climate
system, as derived from observations.
Instead, they begin with arbitrary climatic
conditions and examine only the change
in projected climate, thereby removing
3, any bias that could be associated with
, trying to realistically simulate the
\ current climate as a starting point.
, This technique works quite well
for examining how the climate
could respond to various emissions
, scenarios in the long term.
Climate models have, however,
improved in the past few years, and
society is now demanding ever more
accurate information from climate
scientists. Faced with having to adapt to
a range of possible impacts, policymakers,
coastal planners, water-resource managers
and others are keen to know how the
climate will change on timescales that
influence decision-making. Because the
amount of warming that will take place up
to 2030 is largely dependent on greenhouse
gases that have already been released into
the atmosphere, it is theoretically possible
to predict, with modest skill, how the
climate will respond over this time period.
In recent years, several modelling
groups have published such predictions for
the coming decades™ (Fig. 1). In weather
prediction, and in this newer form of climate
prediction, it is essential to start the model
with the current state of the system. This
is done by collecting observations of the
atmosphere, oceans, land surface and soil
moisture, vegetation state, sea ice and so
forth, and assimilating these data into the
models — which can be challenging, given
model imperfections. Although important
progress has been made in this area, the
techniques are not yet fully established®.
In part because it takes at least a decade to
verify a 10-year forecast, evaluating and
optimizing the models® will be a time-
consuming process. The spread in initial
results is therefore bound to be large, and
the uncertainties much larger, than for the

© 2010 Macmilian Publishers Limited. All rights ressrved.




in addition to scientific
uncertainty, decision makers
must incorporate social,
political and economic
uncertainties
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CONTEXT

Environmental

* Biophysical
(climate, water
supply, other
ecological)

* Land Change
(forest, urban,
agriculture)

Social

* Institutional
(political,
governance,
economic,
organizational)

*  Demand
(demographics,
technological)

* Interpersonal (trust,
responsibility,
tenure)

Model

e Input
e Parameters

TYPE
Fundamental

* Epistemic
*  Ontological

Ambiguity

e Normative
* Objective

Ignorance

* Recognized
*  Purposeful
* Blind

Practical

* Too expensive
Trade-offs

DIMENSIONS
Positioning

* Positive

* Negative

* Neutral
Urgency

* Short-term

* Long-term

Explicitness
* Explicit
* Implicit
Justification
* Inaction
* Policy

¢ Deliberation
e Research

Reducibility

*  Timeline
e Strategy
* Range

e Communication

DEPLOYMENT

e Attenuation

* Amplification

* Quantification
Rhetoric

* Proliferation

* Transference

* Condensing

* Displacing

* Social Ordering



we need to help students to
learn to frame, describe, and
represent uncertainty



Techniques for Visualizing
Uncertainty

Use multiple formats, because no single
representation suits all members of an
audience.

llluminate graphics with words and numbers.

Helpful narrative labels are important.
Compare magnitudes through tick marks.

Use narratives, images, and metaphors that
are sufficiently vivid to gain and retain
attention, but which do not arouse undue
emotion.

Spiegelhalter, D., Pearson, M., & Short, I. (2011). Visualizing

Uncertainty About the Future. Science, 333(6048), 1393-1400. doi:

10.1126/science. 1191181



Techniques for Visualizing
Uncertainty

* |nteractivity and animations provide
opportunities for adapting graphics to user
needs and capabilities.

* Avoid chart junk, such as three-dimensional
bar charts, and obvious manipulation through
misleading use of area to represent
magnitude.

* Most important, assess the needs of the
audience, experiment, and test and iterate
toward a final design.

Spiegelhalter, D., Pearson, M., & Short, |. (2011). Visualizing
Uncertainty About the Future. Science, 333(6048), 1393-1400. doi:
10.1126/science. 1191181



Fig. 3 Visualizations of probabilities for discrete events.
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Fig. 4 Visualizations of the predictive accuracy of a screening test.
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Fig. 5 Visualizations of probability distributions for continuous quantities.
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“...deeper uncertainties do not readily
translate into visualizations. In fact, the more
attractive a depiction is made, the more
people may believe it represents the whole
truth rather than being a construction of
limited knowledge and judgment. So
perhaps the greatest challenge is to make a
visualization that is attractive and
informative, and yet conveys its own
contingency and limitations.”

Spiegelhalter, D., Pearson, M., & Short, |. (2011). Visualizing
Uncertainty About the Future. Science, 333(6048), 1393-1400. doi:
10.1126/science.1191181
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