Urban Demand Research Workshop: Landscape and Water Use Project

Douglas Frost City of Phoenix Water Services Department **April 18th, 2013** Douglas.Frost@Phoenix.Gov

Landscape and Water Use Project

- Phoenix Context
- What We Used To Think
- What We've Experienced
- What We've Learned
- What We're Learning About Landscapes
- Remaining Landscape Research Challenges

Phoenix – Context (System)

- Service area: 540 square miles
- Population served: 1,502,287
- Water accounts: 404,647
- Miles of water mains: 6,962
- Treatment plants: 5
- Booster stations:105 (0.03 to 135 MGD)
- Pressure reducing stations: 95 (0.3 to 80 MGD)
- Storage facilities: 47 (0.006 to 90 MG)
- Active wells: 24 (38 MGD Total Capacity)

Phoenix – Context (System)

Phoenix – Context (Water Portfolio)

What We Used To Think

- Demand from existing homes and businesses is relatively stable
- Use is affected primarily by price and personal behavior
- Strong population and economic growth would consistently lead to increased water use
- Water demand & wastewater generation would grow steadily, with some response to rate increases

What We've Experienced

- Total water production remains stable even as growth occurs
- Volume to wastewater treatment plants stays about same even as growth occurs
- Lower water demand on a per capita basis for existing and especially new customers
- Very low flows in sewers and lift stations in new areas
- Increasing concerns about water quality and sewer maintenance because of low flows

Anticipated Demand Growth Did Not Occur

Max Daily Water Production: Actual, 1998 and 2006 MPs

Total Water Use and Wastewater Generation Has Been Stable

Phoenix Per Capita Water Use: 1996-2010

What We've Learned (1)

- Understanding water demand & wastewater generation like solving puzzle
- Estimating use requires multiple methods
- Methods have included or will include:
 - Quantitative analysis of City-wide meter data
 - Data-logging of individual homes
 - Site visits to homes & businesses (inventories)
 - Sewer metering
 - Landscaping coding & use of satellite imagery
 - Smart (short interval) meter data analysis

Individual Home Analysis

Data Logging

- Trace Analysis
- Discreet End-Use Information

Wastewater Metering/Data Collection

What We've Learned (2)

- Data indicates that change in water use due to long-term technological and cultural factors, not short-term behavioral/price factors
- Water demand and ww generation falling since 2000 on per capita and per unit basis
- Steadily declining water use and wastewater generation seen in all sectors, in all areas, and in existing and new customers
- Change most pronounced in new customers

New Homes Use Less Water and Generate Less Wastewater

Average Water Use (2008) by Year of Home Construction

All Homes are Using Less Water and Generating Less Wastewater

 Water use by single family homes decreased 12 – 15% during the first decade of the 21st Century

TREND IN SINGLE FAMILY AVERAGE DAILY WATER USE FOR VARIOUS PERIODS OF HOME CONSTRUCTION

	Consumption Period		
HOME BUILD YEAR	1997 - 1999	2007 - 2009	
pre - 1960	437	367	
1960 - 1975	478	409	
1975 - 1990	473	412	
1990 - pres	436	368	

Results displayed in average gallons per account per day (GPAD)

Indoor Use Is Very Low For New Units

SUBDIVISION NAME	UNITS	TOT FLOW		W / UNIT	% WW
Anthem West	631	84,854	134	222	61%
Carefree Crossing	370	61,693	│ 167 ∖	254	66%
Colina Del Norte #2	294	65,626	223	285	78%
Country Place	1143	180,120	158	288	55%
Desert Ridge Lot #24	475	38,744	82	252	32%
Foothills Clubwest MH #407	320	39,533	124	296	42%
Foothills Clubwest MH #105	536	84,081	157	272	58%
Larissa	324	33,028	102	237	43%
Moon Valley	1000	120,802	121	323	37%
North Canyon	585	64,919	111	261	43%
Ocotillo	312	33,874	109	227	48%
Silver Creek	226	30,768	136	235	58%
Sonoran Foothills	701	68,178	97	286	34%
Tarracita	534	86,132	161	235	69%
Tatum Highlands	1248	240,248	193	254	76%
Trailwood East	479	79,291	166	240	69%
Trailwood West	707	62,965	89 /	211	42%
Tramonto Parcel #4	268	58,578	∖ 219 /	332	66%
Volterra	490	55,124	<u> </u>	228	49%
AVERAGE	560	78,345	140	260	54%

What We've Learned (3)

- Indoor residential reductions due mostly to gradual transition to more efficient devices
- Majority of residential reductions due to more efficient toilets and washing machines
- Indoor business reductions more complex
- Outdoor residential reductions due to conscious shift to desert landscaping
- Individual homes use same amount of water while green, then use falls dramatically with transition to drier landscape

More Efficient Devices Have Driven Falling Indoor Use

 Major efficiency improvements have been achieved for toilets and clothes washers

Pre-1996 Homes				
Fixture / Appliance	1999 Use Rate (gal/day)	2009 Use Rate (gal/day)		
Toilet	48.3	35.2		
Clothes Washer	43.5	27.9		
Shower	33.3	31.3		
Faucet	24.7	28.0		
Leak ¹	14.1	15.1		
Other	10.1	11.7		
Dish Washer	2.2	1.0		
Bathtub	3.0	1.8		
Total	179.2	152.0		

Data from the 1999 REUWS and the 2009 city of Phoenix ReLog Study

1. Data shown is mean daily use (gallons) except Leak data is median due to right-hand skew.

Revolution In Landscaping Characteristics

Old Model

New Model

Estimated Use by Ahwatukee SF Units Built in Late 70s & Early 80s (Average Annual Gallons Per Day)

Estimates of Water Use by Sample of Ahwatukee Single Family Units Built During Late 70s and Early 80s

	1986	2009 Green	2009 Dry
Toilets/Washers	110	70	70
Shower/Faucets/Bath	80	70	70
Other Indoor/Leaks	50	35	35
TOTAL INDOOR	240	175	175
Outdoor Irrigation	250	250	120
Net Pool	40	40	55
TOTAL OUTDOOR	290	290	175
TOTAL	530	465	350

Assumes Lot Size of Approximately 9,000 Sq.Ft.

Toilets/Washers = Toilets, Clothes Washers and Dish Washers

Other Indoor/Leaks = Evaporative Coolers, Water Softeners, Leaks and Unknown

Net Pool = Difference Between Pool and No Pool (Less Grass for Green Lots)

What We've Learned (4)

- Even with new population and economic growth, new customers may not be enough to offset demand reductions due to efficiency
- Regardless of growth rates increased efficiency will have big impacts on water demands
- Changing demands will have big impact on local & regional infrastructure sizing and on O&M, not just on water resource planning & finances
- Changing demand has important geographic element – overall demand likely to stay stable while some areas see fall and others see rise

Scenario Planning: Using Differing Rates of Decline to Project Alternative Futures (Draft)

Range in Water Demand Scenarios

Projected Change in Water Demand by Phoenix Area Water Master Plan Medium Scenario - 2030

What We're Learning About Landscapes (1)

- Investigations began as effort to validate landscape assumptions in models – question was 'how prevalent is desert landscaping?'
- Initial work involved review of aerial images and simple spreadsheet tallies
- Early work began to reveal numerous opportunities for further analysis
- Project now underway involves interns using new GIS program and guide to code thousands of SF residential landscapes

Example of 'turf' in front and back.

Example of 'extensive plant coverage' front and back, 45' angle and aerial.

Example of front and back 'moderate plant coverage'.

Example of front and back 'sparse plant coverage' aerial.

Examples of homes with pools.

Example of 'arid' front and back.

Landscape Classification Project - Code Definitions

Lot Cor	nfiguration Classification	Turf Co	verage Classification
Code	Description	Code	Description
1	Standard	0	No Turf
2	Pie Slice	1	10% Turf
3	Corner	2	20% Turf
4	Irregullar	3	30% Turf
5	Extended Backvard	4	40% Turf
6	Extended Frontyard	5	50% Turf
7	Ranch/Farm	6	60% Turf
		7	70% Turf
Landsc	ape Classification	8	80% Turf
Code	Description	9	90% Turf
1	Turf	10	Transition
2	Extensive Plant Coverage		
3	Moderate Plant Coverage	Turf Cla	assification Suppleme
4	Sparse Plant Coverage	Code	Description
5	Arid	1	High Quality Turf
6	Transition	2	Medium Quality Turf
		3	Low Quality or Dying 1
Landsc	ape Class Supplement	4	Dormant Turf
Code	Description		
1	Well Defined	Analyst	t
2	Could be Wetter	CODE	NAME
3	Could be Dryer	1	Adam Miller
4	Compromise	2	Alec Mostov
5	Could be 2 or 4	3	Cory Deleon
6	Could be 1 or 6	4	Dale McKendrick
7	Difficult to Code	5	Darius Zolnierczyk
		6	Doug Frost
Pool Cl	assification	7	Tianna Saucedo
Code	Description	8	Amanda Lam
0	None	9	Kenneth Wannemache
1	Full	10	Marek Lubomirski
2	Empty	11	Andrew Deemer
3	Filled In	12	Brad Bohail
4	Small Pool Or Large Water Feature	13	Chris Floyd
5	Above Ground	14	Daniel Tilley
_		15	Madison Pike
Questio	onable Classification	16	Navid Tavalaei
Code	Description	17	Heidi Wang
0	No	18	Elly Wang
1	Yes	19	Joe Hennessy

Supplement

- Turf
- ality Turf
- or Dying Turf

CODE	NAME
1	Adam Miller
2	Alec Mostov
3	Cory Deleon
4	Dale McKendrick
5	Darius Zolnierczyk
6	Doug Frost
7	Tianna Saucedo
8	Amanda Lam
9	Kenneth Wannemacher
10	Marek Lubomirski
11	Andrew Deemer
12	Brad Bohail
13	Chris Floyd
14	Daniel Tilley
15	Madison Pike
16	Navid Tavalaei
17	Heidi Wang
18	Elly Wang

Joe Hennessy

4		

Standardized to 9,000 Sq.Ft. Lot (Annual Average GPD) 700 600 500 400 GREEN WITHOUT POOL GPD GREEN WITH POOL DRY WITHOUT POOL 300 DRY WITH POOL

Source Sources Sources

200

100

0

Early Sample – Late 60s and Early 70s SF Units in 32nd St Sample

Early Sample - Outdoor Water Use By Yard Type Over Time By Category of Landscape (1A = Turf in Front & Back, 4D = Desert Front & Back)

What We're Learning About Landscapes (2)

- Green/turf homes use about as much water as they did in 1986 (some indoor reductions)
- Insofar as rates affect outdoor use, impact appears to be one time/one way
- Reductions in outdoor use have come from other groups
- Summer peaking for dry parcels much lower
- Sample shows transition to desert landscapes well under way – less than one in five are 'turf' or 'extensive plant coverage'

Summer 2012 Sample - SF Unit Avg Annual Use Per Sq. Ft. By Current Landscape Type (Less Than 16, 000 Sq. Ft.)

Summer 2012 Sample - SF (Less Than 16,000 Sq. Ft. Parcels) Average Annual Daily Use By Landscape Type, 1986 = 1

Summer 2012 Sample - SF Units Less Than 16,000 Sq. Ft. Parcel Size By Landscape Type (86-09 Use Records)

What We're Learning About Landscapes (3)

- Water use by moderate landscape homes has declined significantly since '86
- Water use by sparse and arid landscape homes has dropped dramatically since '86
- As expected homes with pools use considerably more water on average
- Almost equal breakdown between those with or without pools in green/turf, moderate and sparse categories

Breakdown of '75 to '84 Single Family Sample By Landscape Type

What We're Learning About Landscapes (4)

- Key issue is how representative is this sample of '75 to '84 age cohort?
- Key issue is how representative is '75 to '84 of all pre-1995 age cohorts?
- How well do these numbers compare with model numbers used in the master plan exercise?
- What happens when water use numbers are used to estimate what landscapes used to be?

Water Use Per Sq. Ft. Parcel By Decade of Construction

Per Square Foot Water Use By SF Units In 1986 And 2009 (GPD Annual Average)

75-84 cohort in 1986 75-84 cohort in 2009

Intern sample: 0.0512

Intern sample: 0.0394

Actual cohort: 0.0517

Actual cohort: 0.0415

WSD model: 0.0498

WSD model: 0.0383

What We're Learning About Landscapes (5)

- The summer intern sample appears to closely resemble overall '75 to '84 cohort
- '75 to '84 cohort appears to be following almost identical trends to other cohorts
- The WSD model numbers are very close to sample numbers both for '86 and '09
- Using water use to estimate landscape (reverse engineering) appears to work well for green/turf and arid, not so well for sparse

Parcels w/ Flood Irrigation

What We're Learning About Landscapes (5)

- Sample appears to be fairly representative of the whole city, at least as far as 6,000 to 16,000 square foot parcel single family units built before '96 are concerned
- Sample is slightly drier than 75' to 84' group as a whole (less than 16,000 sq.ft.) but essentially same
- Whole City is seeing trend to mixed and sparse landscape parcels – more uniform than previously thought

Remaining Landscape Research Challenges (1)

- Variance within 'sparse' category is huge, with some using a lot of water, and some using little; more research needed
- Need for reduced subjectivity in coding of landscapes (source of variation within codes)
- So far no correlation between plant types and water use – overall density appears to be key, but more research needed on mix and density
- Need to continue coding and/or use satellite imagery to get estimates for all of Phoenix

Remaining Landscape Research Challenges (2)

Need to understand more about:

- Role of nurseries and plant suppliers in landscaping decisions (limited choice issue)
- Role of neighbors, local culture and environmental goals in transition decisions
- Relationship between retail price of water and overall 'bundle' cost of different landscapes
- Green to moderate or sparse, or green to moderate and then to sparse?

