INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	00000	00000	

Water Demand Estimation with Satellite Data DCDC Water Demand Workshop

Daniel Brent University of Washington

April 18th 2013

INTRODUCTION	Methodology	Results	Conclusions
0000	00000	00000	

OUTLINE

INTRODUCTION LANDSCAPE MARGINS OF ADJUSTMENT PREVIEW OF RESULTS

METHODOLOGY SATELLITE DATA ESTIMATING LANDSCAPE

RESULTS WATER AND LANDSCAPE CONDITIONAL DEMAND LANDSCAPE CONVERSIONS

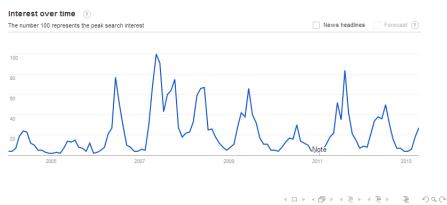
CONCLUSIONS

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	00000	00000	

ACKNOWLEDGMENTS

- Center for Environmental Economics and Sustainability Policy
 - Kerry Smith, Michael Hanemann, Nick Kuminoff, & Josh Abbott
- City of Phoenix Water Services Department
 - Doug Frost, Adam Miller
- Decision Center for a Desert City
 - ► Ray Quay, Dave White (and others)
- School of Geographical Sciences & Urban Planning
 - ► Soe Myint

INTRODUCTION	Methodology	Results	CONCLUSIONS
●000	00000	00000	


LANDSCAPE

- ► Outdoor use can comprise up to 67% of urban demand
- Urban turf estimated to be single irrigated crop in the U.S. (Milesi, Elvidge, Nemani; 2009)
 - ▶ irrigated turf area: 4,503,668 9,602,148 ha
 - ▶ total irrigated cropland: 22,310,529 ha
 - ▶ corn for grain: 3,929,445 ha
- Tangible benefits of landscape (lot's of ASU/DCDC research here)
 - Monetary value
 - Social status
 - Ameliorate urban heat island effect

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	00000	00000	

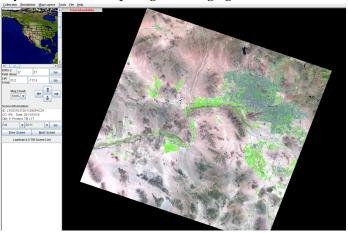
LANDSCAPE & WATER DEMAND

- Demand is counter-cyclical to supply
- Discretionary component of demand
- Often target of mandatory restrictions

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	00000	00000	

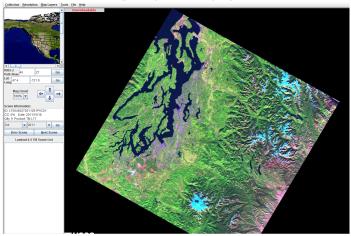
MARGINS OF ADJUSTMENT

- Intensive margin behavioral change
 - Often transient changes in demand (Price et al. 2011)
 - ► Composition of "water capital" impacts adjustment
- ► Extensive margin change in "water capital"
 - Leads to persistent reductions in energy (Alccott & Rogers, 2012)
 - Associated with long-run demand
- Difficult to distinguish the two margins


(日)

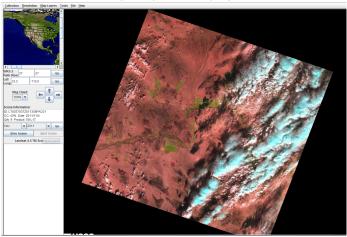
PREVIEW OF RESULTS

- ► Satellite data does a decent job as a proxy for landscape
- Landscape has a crucial role in water use; and in demand parameters
 - Response to prices
 - Response to weather
- Price and neighbors' landscape influence conversions
- ► Landscape conversion significantly decreases water usage


イロト イヨト イヨト イヨト

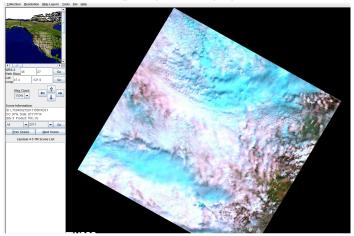
INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	● 000 ○	00000	

Phoenix - October 2011


INTRODUCTION	Methodology	Results	Conclusions
0000	●0000	00000	

Seattle - October2011

イロト イロト イヨト イヨト


INTRODUCTION	Methodology	Results	Conclusions
0000	●0000	00000	

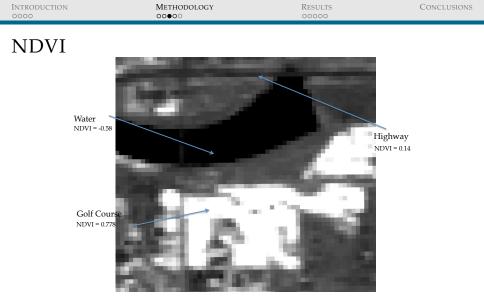
Phoenix - November 2011

< ≣ > ____

INTRODUCTION	Methodology	Results	Conclusions
0000	●0000	00000	

Seattle - July 2011

590


・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Introduction	METHODOLOGY	Results	Conclusions
0000	00000	00000	

SATELLITE DATA

- ► Landsat 5 Thematic Mapper captures 7 bands of the electromagnetic spectrum
 - ► 30m resolution
 - Records an image at the same location every 16 days
- Normalized Difference Vegetative Index (NDVI) captures live vegetation
 - Deforestation
 - Land use change
 - Evapotranspiration and water rights

(日)

Northwest of ASU - Summer 2003

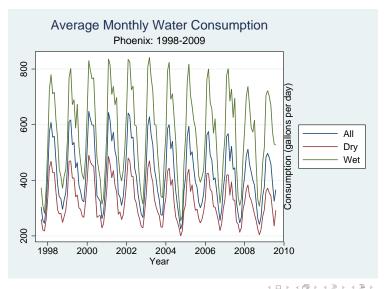
Ξ

イロト イヨト イヨト イヨト

INTRODUCTION	METHODOLOGY	Results	Conclusions
0000	00000	00000	

ADDITIONAL DATA

- ► Monthly water metering records for > 185,000 households in City of Phoenix from 1998-2009 (≈ 24m obs)
 - Thanks Doug & Adam!
- Structural characteristics of the house (lot size, pool, rooms, etc)
- Weather data
- Census demographic and socioeconomic data


INTRODUCTION	METHODOLOGY	Results	Conclusions
0000	00000	00000	

FEASIBILITY

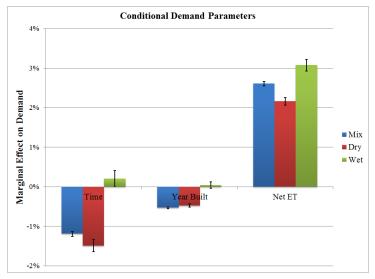
- Spatially merge a time series NDVI to each parcel
 - ► Landsat pixel = 900m² & average lot size = 861m²
 - Tradeoff between resolution and scale
 - ► Thanks Soe!
- ► compare to Stefanov et al. (1998) & recent landscape
- ► NDVI performs well in the "tails"

INTRODUCTION	Methodology	Results	Conclusions
0000	00000	●0000	

WATER AND LANDSCAPE

INTRODUCTION	Methodology	Results	Conclusions
0000	00000	00000	

CONDITIONAL DEMAND



RESULTS

Ξ

INTRODUCTION	Methodology	RESULTS	CONCLUSIONS
0000	00000	0000	

CONDITIONAL DEMAND

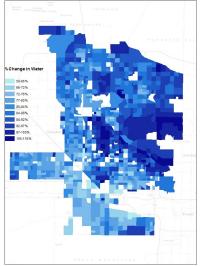
RESULTS

E

INTRODUCTION	Methodology	RESULTS	CONCLUSIONS
0000	00000	0000	

LANDSCAPE DECISIONS

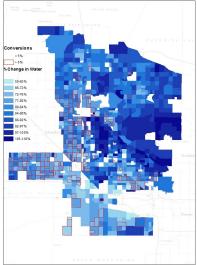
- Landscape capitalization into home prices (Smith & Klabier; 2010)
 - MWTP for green parcel landscaping is \$17
 - MWTP for green neighborhood is \$116
- Social perceptions based on landscape (Ledlow, Sadalla, & many other DCDC affiliates)
 - more sexual attractive
 - more family oriented
 - more extroverted
- ► Urban heat island effect (Gober, Brazel, Quay, Myint, Grossman-Clarke , Miller & Rossi; 2010)


0000 00000 00000	INTRODUCTION	Methodology	Results	CONCLUSIONS
	0000	00000	00000	

LANDSCAPE CONVERSIONS

- Price, and even stronger lagged price, increases probability of conversion
- Presence of neighbors with dry landscape makes conversion more likely
- Landscape conversions cause a 20-30% drop in water usage

INTRODUCTION 0000	Methodology 00000	Results ○○○○●	CONCLUSIONS


CONVERSIONS & LONG-RUN DEMAND

Relative Water Use 2008-09 to 1998-99

INTRODUCTION 0000	Methodology 00000	Results ○○○○●	CONCLUSIONS

CONVERSIONS & LONG-RUN DEMAND

Relative Water Use 2008-09 to 1998-99 with landscape conversions

590

イロト イロト イヨト イヨト

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	00000	00000	

CONCLUSIONS

- Satellite data for modeling water demand
- Heterogeneity in demand due to landscape
- ► Landscape conversions as a driver in reducing demand
- ► Joint evolution of water demand and landscape

INTRODUCTION	Methodology	Results	CONCLUSIONS
0000	00000	00000	

FUTURE WORK

- Compare across cities
- See response to policy initiatives
 - Water restrictions
 - ► Landscape conversion incentives: Christa Brelsford
- Water-energy nexus