Water in the Economy in Arizona Cities

Benjamin L. Ruddell¹

Richard Rushforth¹ Elizabeth A. Adams¹ Seth Herron¹ Yueming Qiu¹ Mike Pasqualetti¹ Vincent C. Tidwell² Stanley Mubako³

¹Arizona State University ²Sandia National Laboratory ³University of Texas El-Paso (corresponding) bruddell@asu.edu 480-727-5123

How to cope with Water Scarcity?

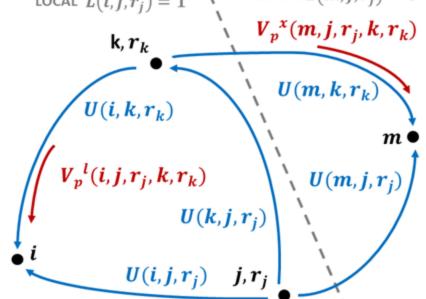
- 1. Technology, efficiency, and reuse (expensive)?
- 2. Curtail economic growth (too expensive)?
- 3. Political reallocation of water to most valuable uses (who decides)?
- 4. Economic reallocation of water resources using prices and water rights (political barriers and high transaction costs)?
- 5. Compromise our social, environmental, or economic values?
- 6. <u>Outsource largest and least valuable water uses?</u>

What are the values of water, to whom, how do we assess them in relation to hydrology, and how are we currently using #6 to solve the problem? A Complex Systems problem... Three types of networks intersect at a specific process node in a true Coupled Natural-Human System network:

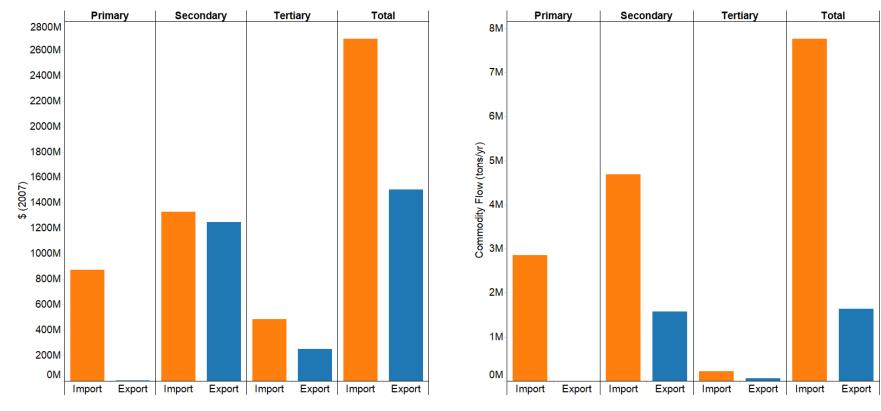
- resource production (+ or -)
- trade or exchange (money, goods, services)
- value production (+ or -)

RESOURCES r		PROCESSES i		VALUES a
All physical resources relevant to values and actions <u>examples</u> : Land Surface Water Ground Water Air Fish and Game Oceans Forests Nutrients Pollutants Minerals Fuels and Energy Sources	Apply "Footprint" methodology to associate Actions with Resource Footprints	All human actions affecting resources and values <u>examples</u> : Power Supply Agricultural Municipal Industrial Water Supply	Apply "Impact" methodology to associate Actions with their Value Impacts	All values affected by actions and resources examples: Social Economic Environmental

Embedded Resource Impact Accounting (ERA): A network theory for complex CNH's


<u>Net Systemic Impact (footprint) of a Process, E</u>: the sum of the Direct (U) and indirect (V) network impacts of a process on a stock of interest, conditioned on a local/external (*I/x*) boundary

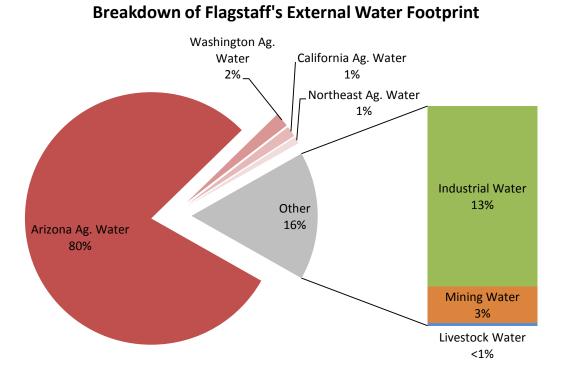
$$E = U^{l} + U^{x} + V^{l}_{IN} - V^{l}_{OUT} + V^{x}_{IN} - V^{x}_{OUT}$$


"<u>Virtual Water</u>" (Allan, 1993) is a special single-type network case of ERA. ERA is itself a special case of I/O and LCA, which are also network concepts. LOCAL $L(i,j,r_i) = 1$ NON-LOCAL $L(m,j,r_j) = 0$

The foundation of ERA is the *partial embedded resource impact* V_p ; the sum across intermediaries *k* and r_k is the net indirect impact *V*

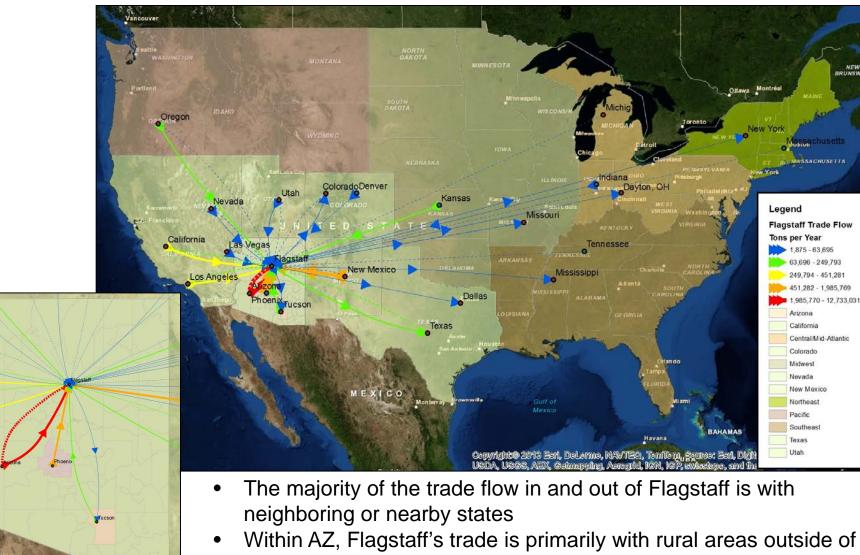
$$V_p(i,j,r_j,k,r_k) = \frac{U(i,k,r_k)}{\sum_n U(n,k,r_k)} * U(k,j,r_j)$$

Commodity Inputs and Output By Distance



Trade Distance (mi)	Average Distance (mi)	Standard Deviaton	Frequecy of Shipment Distance
0-25	20	0	12%
26-299	237	71	11%
300-1000	615	214	40%
1001-1500	1,455	110	24%
1501+	1,915	285	14%

		Frequecy of			
Average Distance	Standard	Shipment Distance			
(mi)	Deviaton				
17	6	14%			
246	71	8%			
574	150	25%			
1,395	164	26%			
2,518	784	26%			
	(mi) 17 246 574 1,395	(mi)Deviaton176246715741501,395164			


Flagstaff Virtual Water Imports

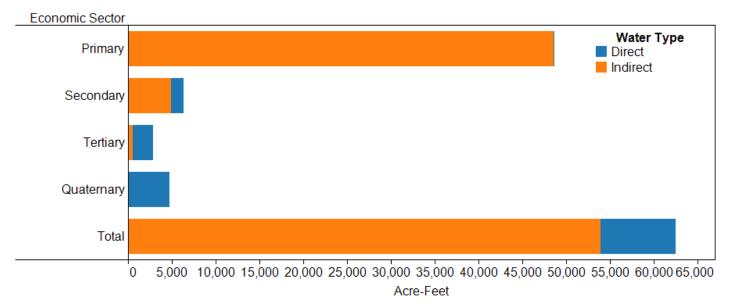
	14/-+	
	Water	
	Import	
State	ac-ft/year	% of Total
AZ	50,185	93.0%
WA	1,103	2.0%
CA	998	1.8%
ТХ	526	1.0%
LA	410	0.8%
SC	238	0.4%
IN	130	0.2%
ОН	66	0.1%
MI	60	0.1%
СО	59	0.1%
OR	53	0.1%
IL	24	0.0%
NV	24	0.0%
TN	22	0.0%
NM	19	0.0%
WV	14	0.0%
GA	14	0.0%
NY	4	0.0%
PA	4	0.0%
МО	3	0.0%
WI	3	0.0%
MA	2	0.0%
MN	2	0.0%
UT	2	0.0%
KS	1	0.0%
Total	53,966	

		Embedded	Embedded Water			
	Import Value	Water	Value			
Economy Sector	(2007 \$)	(acre-feet)	(\$/gallon)			
Primary	\$875,432,388	48,559	\$0.06			
Secondary	\$1,327,485,470	4,937	\$0.83			
Tertiary	\$487,343,881	501	\$2.99			

Visualizing the Flow of Embedded Resources in and out of Flagstaff, AZ

the metropolitan areas.

Las Vegas

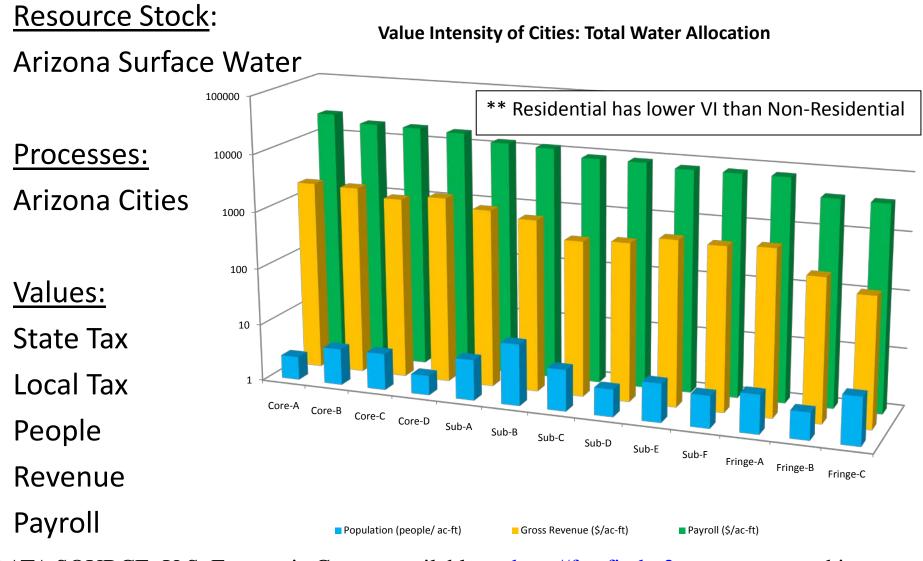

Legend Flagstaff Trade Flo

Tons per Year 1,875 - 63,695 63,696 - 249,793 249,794 - 451,28

151,282 - 1,985,769

Flagstaff Water Footprint By Economic Sector

- Flagstaff's indirect water consumption (53,996 ac-ft per year) occurs in lower economic sectors
 - Resource intensive industries: agriculture
 - Lower value intensity
- Flagstaff's direct water consumption (8,553 ac-ft per year) supports higher level economic sectors
 - Less resource intensive: Education, finance, high value manufacturing
 - Higher value intensity



Value Intensity of Flagstaff Water By Sector and Type

	Prin	nary	Seco	ndary	Tert	iary	Quate	rnary	Тс	otal		Prim	ary	Secor	ndary	Tert	iary	Tot	al
55,000											\$3.00-								
50,000-											\$2.80-								
											\$2.60-								
45,000											\$2.40-								
40,000											\$2.20-								
35,000-											\$2.00-								
											لم \$1.80 1.60- 2007) \$1.40- 2007)								
4 4 9 8 9 25,000											60° ≥_\$1.60-								
ອັ ¥ 25,000-											ຊັ້ງ\$1.40- ∽								
											\$1.20-								
20,000											\$1.00-								
15,000-											\$0.80-								
10,000-											\$0.60-								
10,000-											\$0.40-								
5,000											\$0.20- \$0.00								
0											Φ 0.00	Indirect	Direct	Indirect	Direct	Indirect	Direct	Indirect	Direct
	Indirect	Direct																	

- Flagstaff's indirect water demand more than 6x greater than direct water consumption
- Value Intensity of Flagstaff's direct consumption highest in secondary sector
- Value Intensity of Flagstaff's indirect water demand highest in tertiary sector
- Overall, Flagstaff imports lower value water (indirect) and exports water at higher value (direct)

Multiple Values of Water for Arizona Cities

DATA SOURCE: U.S. Economic Census available at <u>http://factfinder2.census.gov</u>, and in ADWR and municipal annual reports not available in public databases.